SCUBA-2 FTS Project Office
University of Lethbridge

Physics Department

4401 University Drive

Lethbridge, Alberta

Email: brad.gom@uleth.ca

CANADA
T1K 3M4

Tel: 1-403-329-2771
Fax: 1-403-329-2057

WWW: http://research.uleth.ca/scuba2/

Document Title: FTS-2 RTS Client Implementation

Document Number: SC2/FTS/SOF/xxx

Issue: draft

Date: 9 November 2006
Document Baoshe Zhang Signature =1 T N
Prepared By: FTS-2 SW Engineer and Date: — O © 09/11/06
Document D. A. Naylor Signature Rvrd A Nogdae
Approved By: FTS Project Lead and Date: 09/11/06

J. Molnar .
gglzl;?e%né . Canadian Project ;%ngt;tr; Mg’—)
Y- Manager : 09/11/06
FTS-2 RTS Client Implementation SC2/FTS/ISOF/xxX draft L'é?'ﬁi',?ivdge

Page 1 of 10

}!{

http://research.uleth.ca/scuba2/

Change Record

Issue | Date Section(s) Description of Change / Change Request Reference /
Affected Remarks

0.1 17/06/02 | All First draft

Contents

Change RECONM.ocuiiiiiie ettt sttt s e st e et st e be e beeneenreas 2

L0101 (=101 T PP OPPOUPRPI 2

SUMIMAIY .ttt ettt ettt et ekttt e ket e ke e s hb e et e e e R et e bt e eb st et e e ehe e e beeeb s e e nbeenaneebeeannean 3

1. CoNtrol SOTtWAre SEIUCTUIE........c.eeieeiecieesie ettt sre e e nne e 3

2. RTS BVENE SEOUEBINCEeeteietee ittt ettt ettt et be et e et e e sbe e e nbeesseeebeesaneenbeesnnean 4

3. Standard RTS CHENt INTEITACEccveee e 5
Alert Parameter ValUE...........cuviiiiiii ettt 5
User Supplied SOftware RESPONSEcviiiiiieieieie e 5

4. FIOWCRNAITS.......ecitieiecteecte ettt et e e e s s e e st e e seesseesteeneesra e raeneenreas 6
4.1. Initialization of PMC-485 and FTS-2 kernel module..........ccccoevvveiieieiinieenene 6
4.2. FIFO_FTS2_COMMAND command handler..........cccccooverieieevesieie e 7
4.3. Handshaking real-time task. ... 8
4.4, INEErTUPE HANGIEEt 9
A5, EIrOr HANGIEE ..ottt te e s raeenbeesnee s 9

University of

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft Lethbridge

Page 2 of 10
‘\:‘{{?{‘—‘;\,ﬁj?‘

Summary

Coordination and synchronization between JCMT instruments, OCS and DAS are
performed by the Real Time Sequencer (RTS). Since every RTS device must use the
same hardware interface and perform many of the same functions, the JCMT uses a
generalized software interface for any new RTS compliant instrument. With this
interface, a new RTS compliant instrument only needs to provide 6 event-driven
instrument-specific call-back procedures. This significantly simplifies the control
software development for new RTS Client instruments.

Currently, the RTS software runs on a VxWorks computer mounted in a VMEBuUS
chassis. Due mainly to budget constraints, the FTS-2 and POL-2 instruments will use the
RTAI real-time Linux operating system instead of VxWorks for their RTS client
software. At the time of writing however, the real-time Linux version of the RTS
software interface was not yet available.

This document details the FTS-2 control system event processing and its RTAI
implementation. This implementation follows the RTS requirements tightly, so that when
the real-time Linux version of the RTS software interface is available, this
implementation can be easily ported to the new interface.

1. Control software structure

A fundamental feature of Linux/Unix is the clear distinction between what occurs in
‘kernel space’ and what occurs in ‘user space’. In order to avoid any kind of latency by
the Linux scheduler, the RTS signal processing component of the FTS-2 control software
must be a Linux kernel module. Furthermore, the Linux kernel must be a real-time
kernel, such as RTAI. However, in order to exploit the functions provided by Linux
libraries and system calls by Linux, other parts of the control software must run in the
Linux user space. The communication interface between the user-space component and
the kernel component is realized by the RTAI FIFO and shared memory mechanism. The
control software user-space component uses this interface to set parameters for the kernel
component (such as the sequence number of a scan), starts the kernel component real-
time handshaking task, and synchronizes the operations between the user-space and
kernel components.

University of

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft Lethbridge

Page 3 of 10
\,ﬁi ‘_‘ﬁg?\

2. RTS event sequence

In order to better understand the FTS-2 control software, the RTS signal sequence can be
divided into four phases according to function: initialization, handshaking, integration,

and last integration. Figure 1 lists various events of these four phases and their relations.

Last
Integration

Integration

Initialization Handshaking

SC
DV

SR

‘paysiuly sI ueoss

Jua.1Ind 8y} Jey ssadoid xnuiq ay} Ayjou pue jdnuisyul DS ajqesip ‘ydnuisjul abpa Builje; DS uQ
‘0=¥S 19s pue jdnusjul AQ 3jgesip ‘ydnuisiul abpas Buljies AQ UO

'L=¥8 19s ‘ydnuisjul abps Buisu DS uQ

‘0=dS 1S
‘uoneibayul jse| 1oy (abpa Buijey) ydnuisul AQ jqeus

(spow |S ui jsuiy uonow abeys ay} Uess)
0=YS 1S pue Ja)unod aouanbas ayj Juswaioul ‘}dnuisul abpa Buljiey DS UO

(epow |S ul }sJiy uonisod uj abe)s [1puNn J0j Jem)
1 =4S 18s 1dnusjul abps Buisu 9S uQ

"yse} Buiyeyspuey s|gesip pue ‘spow SNoNuUiuod
ay} Jo} abeys ay) Buinow Hejs pue 0=yS }es pue jdnudjul DS d|qeus ‘g 0} | woyy sabueyd DS
"1=¥S 189S ‘Uay} pue | =08 [Jun Hepp

sk} awi}-|eas ayeyspuey s|qeud
uolisod Buipiels ay} o} abejs ay} Ao
sidnusjul AQ pue OS d|qesiq

Figure 1. FTS-2 RTS event sequence

University of
Lethbridge

draft

SC2/FTS/SOF/xxx

FTS-2 RTS Client Implementation

o
i
Y—
o
<
(5]
(=)
©
o

3. Standard RTS client interface

In the standard RTS client framework, the function ‘rtsClientOpen’ is used to obtain an
ID pointing to a specific PMC-485 card for all subsequent calls. The function
‘rtsClientSetCallback’ is used to provide 6 event-driven instrument-specific call-back
procedures corresponding to 6 RTS events (or alerts):

e SET_SR_LOW_WHEN_READY
SET_SR_HIGH_WHEN_READY
START_INTEGRATION
STOP_INTEGRATION
STOP_LAST_INTEGRATION
ERROR

Their meanings of these events are listed in the following table:

Alert Parameter Value User Supplied Software Response

Get sequence ready.
SET_SR_LOW_WHEN_READY(0) When ready, respond by calling rtsClientClearSR.

Get ready for next integration.

SET_SR_HIGH_WHEN_READ() When ready, respond by calling rtsClientSetSR.

Begin performing integration, or remain in quiescent

START_INTEGRATION(2) state until end of integration.

Stop integration

STOP_INTEGRATION(3) Get ready for next integration.

Stop integration.

STOP_LAST_INTEGRATION(4) Get ready for next command from TODD++.

RTS error occurred.

Stop everything.

Alert the TODD+ of the error.
Get ready for next command.

ERROR(5)

Since all flow control passes to the user supplied software when a callback is performed,
care should be taken to only do necessary items in the callback procedures. That way the
rtsRealTime task can quickly return to monitoring the RTS.

University of

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft Lethbridge

Page 5 of 10
\,ﬁi ‘_‘ﬁg?\

4. Flowcharts

In this section, in order to clarify the implementation of the FTS-2 RTS Client, the FTS-2
kernel module is divided into five parts according to their functions.

4.1. Initialization of PMC-485 and FTS-2 kernel module

This initialization procedure is only called once, i.e., when the FTS-2 kernel module is
loaded into the Linux kernel. Its main function is to set the PMC-485 card and set the
communication interface between the kernel module and the Linux user-space process.

v
Search for PMC-485 cards

:

Collect PMC-485 card information:
Memory address, 1/0 space, IRQ number, etc.

:

Disable PMC-485 interrupt

-

Set the directions of the RTS signal lines:
DV = input
SC = input
SR = output

:

Set the interrupt edge:
SC = dual edge
DV = falling edge

:

Set the PMC-485 interrupt handler

v

Set RTAI FIFOs/Semaphores to synchronize kernel module and user process:
FIFO_FTS2_COMMAND
FIFO_FTS2_RESPONSE
FIFO_FTS2_SI_SYNC
SHM_FTS2_SEQUENCE

:

Set command handler for
FIFO_FTS2_COMMAND

End

Figure 2. PMC-485 initialization

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft L'ér{'fﬁ',?i"dge

Page 6 of 10

4.2. FIFO_FTS2_COMMAND command handler

The command handler of FIFO_FTS2_COMMAND provides a communication interface
between the FTS-2 kernel module and the Linux user-space process. The two main
functions of this command handler are to set scanning parameters and to force the FTS-2

module into its initialization phase.

Analyze Linux user process
command string

N First character = ?

i

Extract sequence
number from
remaining characters

v

Set SEQUENCE_NUM

S

i

Start the handshaking
real-time task

End

Figure 3. FIFO_FTS2_COMMAND command handler

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft L'ér{'fﬁ',?i"dge

Page 7 of 10
el

g

4.3. Handshaking real-time task

The handshaking task is a real-time periodic task. It uses a polling method to check for
SC signal changes, and sets the SR level accordingly.

Begin

A
Set START_SCAN_FLAG =0

v

» Read SC/DV/SR «

SC=17? No

Yes

v

Set START_SCAN_FLAG =1

Set SR =1

START_SCAN_FLAG = 1?

Yes

v

Enable SC interrupt
Disable DV interrupt

v

Start stage motion
(in continuous scan mode)

-

Set LAST_INTEGRATION_FLAG =0

-

Reset sequence counter
(sequence_count = 0)

.

SetSR=0

-

Disable handshaking task

A 4

End

Figure 4. Handshaking real-time task

University of

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft Lethbridge

Page 8 of 10

4.4. Interrupt Handler

The interrupt handler is responsible for processing the changes of SC and DV during the
integration phase and the last integration phase.

v

Read SC/DV/SR

LAST_INTEGRATION_FLAG
=1?

No
Yes 3
DV falling edge? v Increment sequence counter
SC=SR=1,DV=0 Wait until stage in position (sequence_count++)

(SI mode only)

SetSR=1

Yes

Last second of integration?
(sequence_count =
SEQUENCE_NUM - 1)

4 No
SetSR=0 Yes

v

Set LAST_INTEGRATION_FLAG =1

:

No Yes Enable DV interrupt

SetSR=1

Disable SC interrupt > SetSR=0

Disable DV interrupt

End

Figure 5. PMC-485 interrupt handler

4.5. Error Handler
The error handler is responsible for processing various errors.

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft L'ér{'fﬁ',?i"dge

Page 9 of 10
RVEL

g

References:

[1] Craig Walther, lan A Smith, JCMT Real Time Sequencer (RTS) Client Interface
Description, RTS/CAW/001, 2002.

[2] B.D.Kelly, Real-Time Sequencer Functional Requirements, RTS/BDK/001.4, 2001.
[3] B.D.Kelly, SCUBA-2 FTS and Polarimeter Coordination, SC2/SOF/S200/026, 2004.

University of

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft Lethbridge

Page 10 of 10
E‘{\,?{‘_‘;Q’?\

	 Change Record
	Contents
	 Summary
	Alert Parameter Value
	User Supplied Software Response

