

SCUBA-2 FTS Project Office
University of Lethbridge

Physics Department
4401 University Drive
Lethbridge, Alberta

CANADA
T1K 3M4

Tel: 1-403-329-2771
Fax: 1-403-329-2057

Email: brad.gom@uleth.ca
WWW: http://research.uleth.ca/scuba2/

Document Title: FTS-2 RTS Client Implementation

Document Number: SC2/FTS/SOF/xxx

Issue: draft

Date: 9 November 2006

Document
Prepared By:

Baoshe Zhang
FTS-2 SW Engineer

Signature
and Date: 09/11/06

Document
Approved By:

D. A. Naylor
FTS Project Lead

Signature
and Date: 09/11/06

Document
Released By:

J. Molnar
Canadian Project
Manager

Signature
and Date: 09/11/06

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 1 of 10

http://research.uleth.ca/scuba2/

Change Record

Issue Date Section(s)

Affected
Description of Change / Change Request Reference /
Remarks

0.1 17/06/02 All First draft

Contents

Change Record.. 2
Contents .. 2
Summary ... 3
1. Control software structure... 3
2. RTS event sequence.. 4
3. Standard RTS client interface ... 5

Alert Parameter Value... 5
User Supplied Software Response .. 5

4. Flowcharts... 6
4.1. Initialization of PMC-485 and FTS-2 kernel module .. 6
4.2. FIFO_FTS2_COMMAND command handler... 7
4.3. Handshaking real-time task.. 8
4.4. Interrupt Handler.. 9
4.5. Error Handler ... 9

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 2 of 10

Summary
Coordination and synchronization between JCMT instruments, OCS and DAS are
performed by the Real Time Sequencer (RTS). Since every RTS device must use the
same hardware interface and perform many of the same functions, the JCMT uses a
generalized software interface for any new RTS compliant instrument. With this
interface, a new RTS compliant instrument only needs to provide 6 event-driven
instrument-specific call-back procedures. This significantly simplifies the control
software development for new RTS Client instruments.

Currently, the RTS software runs on a VxWorks computer mounted in a VMEBus
chassis. Due mainly to budget constraints, the FTS-2 and POL-2 instruments will use the
RTAI real-time Linux operating system instead of VxWorks for their RTS client
software. At the time of writing however, the real-time Linux version of the RTS
software interface was not yet available.

This document details the FTS-2 control system event processing and its RTAI
implementation. This implementation follows the RTS requirements tightly, so that when
the real-time Linux version of the RTS software interface is available, this
implementation can be easily ported to the new interface.

1. Control software structure
A fundamental feature of Linux/Unix is the clear distinction between what occurs in
‘kernel space’ and what occurs in ‘user space’. In order to avoid any kind of latency by
the Linux scheduler, the RTS signal processing component of the FTS-2 control software
must be a Linux kernel module. Furthermore, the Linux kernel must be a real-time
kernel, such as RTAI. However, in order to exploit the functions provided by Linux
libraries and system calls by Linux, other parts of the control software must run in the
Linux user space. The communication interface between the user-space component and
the kernel component is realized by the RTAI FIFO and shared memory mechanism. The
control software user-space component uses this interface to set parameters for the kernel
component (such as the sequence number of a scan), starts the kernel component real-
time handshaking task, and synchronizes the operations between the user-space and
kernel components.

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 3 of 10

2. RTS event sequence
In order to better understand the FTS-2 control software, the RTS signal sequence can be
divided into four phases according to function: initialization, handshaking, integration,
and last integration. Figure 1 lists various events of these four phases and their relations.

SC

DV

SR

Handshaking Integration Last
Integration

Initialization

Figure 1. FTS-2 RTS event sequence

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 4 of 10

3. Standard RTS client interface
In the standard RTS client framework, the function ‘rtsClientOpen’ is used to obtain an
ID pointing to a specific PMC-485 card for all subsequent calls. The function
‘rtsClientSetCallback’ is used to provide 6 event-driven instrument-specific call-back
procedures corresponding to 6 RTS events (or alerts):

• SET_SR_LOW_WHEN_READY
• SET_SR_HIGH_WHEN_READY
• START_INTEGRATION
• STOP_INTEGRATION
• STOP_LAST_INTEGRATION
• ERROR

Their meanings of these events are listed in the following table:

Alert Parameter Value User Supplied Software Response

SET_SR_LOW_WHEN_READY(0) Get sequence ready.
When ready, respond by calling rtsClientClearSR.

SET_SR_HIGH_WHEN_READ(1) Get ready for next integration.
When ready, respond by calling rtsClientSetSR.

START_INTEGRATION(2) Begin performing integration, or remain in quiescent
state until end of integration.

STOP_INTEGRATION(3) Stop integration
Get ready for next integration.

STOP_LAST_INTEGRATION(4) Stop integration.
Get ready for next command from TODD++.

ERROR(5)

RTS error occurred.
Stop everything.
Alert the TODD+ of the error.
Get ready for next command.

Since all flow control passes to the user supplied software when a callback is performed,
care should be taken to only do necessary items in the callback procedures. That way the
rtsRealTime task can quickly return to monitoring the RTS.

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 5 of 10

4. Flowcharts
In this section, in order to clarify the implementation of the FTS-2 RTS Client, the FTS-2
kernel module is divided into five parts according to their functions.

4.1. Initialization of PMC-485 and FTS-2 kernel module
This initialization procedure is only called once, i.e., when the FTS-2 kernel module is
loaded into the Linux kernel. Its main function is to set the PMC-485 card and set the
communication interface between the kernel module and the Linux user-space process.

Figure 2. PMC-485 initialization

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 6 of 10

4.2. FIFO_FTS2_COMMAND command handler
The command handler of FIFO_FTS2_COMMAND provides a communication interface
between the FTS-2 kernel module and the Linux user-space process. The two main
functions of this command handler are to set scanning parameters and to force the FTS-2
module into its initialization phase.

Begin

Analyze Linux user process
command string

Set SEQUENCE_NUM

End

First character = ?

Extract sequence
number from

remaining characters

N

Start the handshaking
real-time task

S

Figure 3. FIFO_FTS2_COMMAND command handler

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 7 of 10

4.3. Handshaking real-time task
The handshaking task is a real-time periodic task. It uses a polling method to check for
SC signal changes, and sets the SR level accordingly.

Figure 4. Handshaking real-time task

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 8 of 10

4.4. Interrupt Handler
The interrupt handler is responsible for processing the changes of SC and DV during the
integration phase and the last integration phase.

Begin

End

Yes

LAST_INTEGRATION_FLAG
= 1?

No

Read SC/DV/SR

DV falling edge?
(SC = SR = 1, DV = 0)

Yes
No

Disable DV interrupt

Set SR = 0

SC = 1?

Set SR = 1

Disable SC interrupt

YesNo

SC = 1?

Wait until stage in position
(SI mode only)

Yes

Set SR = 1

No

Increment sequence counter
(sequence_count++)

Last second of integration?
(sequence_count =

SEQUENCE_NUM – 1)

Set LAST_INTEGRATION_FLAG = 1

Enable DV interrupt

Set SR = 0

Yes

No

Figure 5. PMC-485 interrupt handler

4.5. Error Handler
The error handler is responsible for processing various errors.

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 9 of 10

References:
[1] Craig Walther, Ian A Smith, JCMT Real Time Sequencer (RTS) Client Interface
Description, RTS/CAW/001, 2002.
[2] B.D.Kelly, Real-Time Sequencer Functional Requirements, RTS/BDK/001.4, 2001.
[3] B.D.Kelly, SCUBA-2 FTS and Polarimeter Coordination, SC2/SOF/S200/026, 2004.

FTS-2 RTS Client Implementation SC2/FTS/SOF/xxx draft

Page 10 of 10

	 Change Record
	Contents
	 Summary
	Alert Parameter Value
	User Supplied Software Response

