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While sampling an interferogram it can be an advantage not to stop the variation in 
optical path difference during the sampling process. If the data acquisition integrates 
between the sample points a “sample” is actually an integral over the optical path 
variation between two samples points. Using a term from sample and hold theory the 
Aperture time is long compared to the sample interval. 
 
The effect of a large aperture time is a suppression of high frequencies in the restored 
spectra. As an example consider a square frequency spectra from fN/2-b to fN/2 (measured 
in inverse cm). Using Mathcad with fN =50 and b=10 the interferogram needs to be 
sampled with optical path step of 0.02 cm to avoid aliasing. Thus 
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The interferogram is symmetric around zero so we really have 2*2048-1 points. This 
implies that the Discrete Fourier Transform pair is real and symmetric with the 
corresponding period. To use the Mathcad built in fft function we need to add the missing 
points. We will also insert an extra point to get exactly 2048 points. To guard against 
numerical imperfections we take the real part of the fft transform (the imaginary part is 
very small). The fft routine only requires the input function to be real and defined in 
exactly 2n points. 
  
hi 2048+ h2048 i−:= h2048 h2047:=

G fft h( ):= Gr
G G

⎯
+
2

:=
 

 
We can now compute the spectra from the sampled interferogram, which should be 0 up 
to fN/2-b (50/2-10=15cm-1) and then 1 up to fN/2 (50/2=25 cm-1). As can be seen in the 
figure below this works out fine with just a small overshoot caused by the (unrealistic) 



discontinuity in the bandpass. Note that the Mathcad normalization includes a square root 
of 4096, which we need to remove to get the right amplitude. 
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If we integrate over the sampling interval instead of sampling a discrete point the result 
will change. Assume the integral is over the distance between two Nyquist sample points 
in the optical path delay space. To make it simple we consider each sample to be centered 
on the interval of 0.02cm between the samples. 
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If we now compute the spectra as above we will see that the high frequency end have 
been reduced. This is the effect of smoothing the interferogram by integrating over the 
Nyquist interval. 
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To see the effect at all frequencies we repeat the calculations with a bandpass equal to 1 
up to the Nyquist frequency. 
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The two resulting spectra are shown below (left – sampled, right – integration between 
the sample points). 
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