

SCUBA-2 FTS Project Office
University of Lethbridge

Physics Department
4401 University Drive
Lethbridge, Alberta

CANADA
T1K 3M4

Tel: 1-403-329-2771
Fax: 1-403-329-2057

Email: brad.gom@uleth.ca
WWW: http://research.uleth.ca/scuba2/

Document Title: FTS-2 DR Java Package

Document Number: SC2/FTS/SOF/004

Issue: Version 1.2

Date: 2 November 2006

Document
Prepared By:

B. Zhang
FTS Software Engineer

Signature
and Date: 02/11/06

Document
Approved By:

D. A. Naylor
FTS Project Lead

Signature
and Date: 02/11/06

Document
Released By:

J. Molnar
Canadian Project
Manager

Signature
and Date: 02/11/06

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 1 of 13

http://research.uleth.ca/scuba2/

Change Record

Issue Date Section(s)

Affected
Description of Change / Change Request Reference /
Remarks

0.1 04/04/06 All First draft
1.0 30/10/06 All CDR version
1.1 31/10/06 2.2 Added deglitching section
1.2 2/11/06 2 Minor formatting fixes

Contents

Change Record.. 2
Contents .. 2
1. Introduction... 3
2. The FTS Java Package .. 4

2.1. Interpolation... 4
2.2. Deglitching... 5
2.3. Phase Correction .. 5
2.4. FFT... 6
2.5. Example ... 7

3. FTS-2 Java Classes ... 10
3.1. NDF I/O ... 10
3.2. Quick Look (optional).. 11
3.3. FTS-2 Messaging System .. 13

References... 13

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 2 of 13

1. Introduction
This document describes the Java package created for the FTS-2 DR engine processing
code. Java was chosen as the engine language due to the heritage of the Herschel SPIRE
project, from which many of the FTS-2 algorithms are derived. The Java code processes
interferogram data into spectral data, and consists of algorithm classes for interpolating
the interferogram data onto a regular grid, phase correction, and Fourier transformation
(FFT).

In the case of an ideal interferometer, an interferogram is a real and even function of the
optical path difference (OPD) between the interfering radiation beams. In the ideal case,
only one side of the interferogram must be recorded and the spectrum can be calculated
using a single-sided Fourier cosine transform.

In practice, real interferometers produce interferograms with a path difference that varies
with the frequency of the radiation, due to optical, electronic or sampling effects. Further,
the discrete sampling might not include the zero path difference (ZPD) position. In this
case, the interferograms are no longer symmetric and the spectra cannot be retrieved
using a simple single-sided transform.

The Java code described in this document corrects the asymmetry of an interferogram (so
that a single-sided transform may be used), resamples the interferograms onto an even
OPD grid (so that a FFT can be used), applies a phase correction function, and then
calculates the final spectra.

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 3 of 13

2. The FTS Java Package
A non-ideal (phase-distorted and irregularly-sampled) interferogram must be re-sampled
evenly (or interpolated) and phase-corrected before one-side cosine FFT can be applied.
The following flowchart shows how to compute a spectrum from a non-ideal
interferogram.

2.1. Interpolation
In the FTS-2 Java package, a natural cubic spline algorithm (i.e., the second derivatives
of each polynomial is set to zero at the endpoints) is applied for interpolation. This
algorithm is implemented by ca.uol.aig.fts.fitting.CubicSplineInterpolation. The major
constructor of this Java class is:

CubicSplineInterpolation(double[] x_orig)

where x_orig is an array representing the OPD of an irregularly-sampled interferogram.

This Java class has only one method:

public double[] interpolate(double[] y_orig)

where y_orig is an array representing the intensity values of an irregularly-sampled
interferogram. The return value is an array representing the intensity values of the new
evenly-sampled interferogram.

This algorithm is optimized for the case where multiple interferograms share the same
x_orig.

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 4 of 13

2.2. Deglitching
The deglitching algorithm is implemented by the Java class:

ca.uol.aig.fts.deglitch.Deglitching

This Java class has only one constructor:

Deglitching(int dsSize, int index_ZPD)

where, dsSize is the half size of the double-sided interferogram and index_ZPD is the
index number of the ZPD.

It also has only one public method:

public void deglitch(double[] ifgm, int deglitching_flag)

where ifgm is an input interferogram to be deglitched, deglitching_flag is the
deglitching flag. Possible values for deglitching_flag are:

• 1 - only deglitch the core part of the interferogram
• 2 - only deglitch the tail part of the interferogram
• 3 - deglitch both of the core part and the tail part of the interferogram
• other values - no deglitching

2.3. Phase Correction
The phase correction algorithm is implemented by the Java class:

ca.uol.aig.fts.phasecorrection.PhaseCorrection

The major constructor of this Java class is:

PhaseCorrection(int dsLength, int ssLength, int phaseFittingdegree, int
pcfSize_h, double weight_limit, int ZPD_index, int interferogram_len,

double wn_lBound, double wn_uBound)

Parameters Comments

dsLength Half of the length of the double-sided interferogram
(points).

ssLength Length of the single-sided interferogram (points).
phaseFittingdegree The degree of the polynomial used to fit the phase.

pcfSize_h Half of length of the phase correction function (points).

weight_limit Amplitude threshold below which phase points will be
neglected in the phase correction.

ZPD_index The index number of the ZPD in the interferogram.
interferogram_len The total length of the original interferogram (points).

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 5 of 13

wn_lBound

The fractional position (0 – 1) in the phase array below
which phase data will not be included in the phase fitting.
The lowest wavenumber used in phase-fitting is wn_lBound
x dsSize x Nyquist.

wn_uBound

The fractional position (0 – 1) in the phase array above
which phase data will not be included in the phase fitting.
The highest wavenumber used in phase-fitting is
wn_uBound x dsSize x Nyquist.

The major method of this Java class is:

public double[] getInterferogram(double[] compositeInterferogram,
double[] phaseFitting_stderr)

where compositeInterferogram is the original interferogram (with a long single-sided
part of length ssLength and a short double-sided part of length is 2 x dsLength) and
phaseFitting_stdderr is the standard deviation of the phase fitting. The return value
is the phase-corrected single-sided interferogram with length (ssLength+1).

2.4. FFT
A Cosine FFT is used to obtain the spectrum from a phase-corrected single-sided
interferogram. The Cosine FFT is implemented in the Java version of the fftpack
package as: ca.uol.aig.fftpack.RealDoubleFFT_Even.

The constructor of this Java class is:

RealDoubleFFT_Even(int n)

where n is the size of the wavenumber table to be constructed, and can be any positive
integer. When (n-1) can be factored by small numbers (4, 2, 3, 5), this FFT transform is
very efficient. The size of the real periodic sequence corresponding to this real even
sequence is 2(n-1).

This Java class has two methods: ft and bt. The forward cosine FFT transform, ft, has the
following form:

public void ft(double[] x)

where x is the array to be transformed. After the FFT, x contains the transform coeffients.
The backward cosine FFT transform, bt, has the following form:

public void bt(double[] x)

where x is the array to be transformed. After the FFT, x contains the FFT transform
coeffients, i.e., the spectrum.

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 6 of 13

RealDoubleFFT_Even has a constant, norm_factor, used to normalize the FFT. This
normalization is required since a call of the forward transform (ft) following by a call of
backward transform (bt) will multiply the original input sequence by norm_factor:

x = bt(ft(x))/norm_factor

The forward transform of RealDoubleFFT_Even is identical to its backward transform.

2.5. Example
In this section, a simple example, TestDRPipeline.java, is given to illustrate how to
call three Java classes mentioned above efficiently. In the following example, an
interferogram cube, ifgm_cube(x, y, z) (x, y are the indices of pixel positions, z is
the index of points in an interferogram (x, y)) is used as input and spectrum_cube(x,
y, z) as output. Meanwhile, all interferograms in ifgm_cube share the same OPD grid.
(Note that the obliquity effect will require spectral calibration for off-axis pixels.)

import ca.uol.aig.fts.fitting.CubicSplineInterpolation;
import ca.uol.aig.fts.phasecorrection.PhaseCorrection;
import ca.uol.aig.fftpack.RealDoubleFFT_Even;
import ca.uol.aig.fts.deglitch.Deglitching;

public class TestDRPipeline
{
 public static void main(String[] args)
 {
 int arrayLength=40, arrayWidth=32;
 int dsSize=300, ssSize=5001;
 int pcfSize_h=80, fittingDegree=2;
 double weight_limit=0.05;
 double zpd_value = 400.0;
 double wn_lBound = 0.05;
 double wn_uBound = 0.95;
 int deglitch_flag = 3;

 double[] opd = new double[dsSize+ssSize-1];
 double[][][] ifgm_cube =
 new double[arrayWidth][arrayLength][dsSize+ssSize-1];

 /* make data for ifgm_cube */
 for(int i=0; i<dsSize+ssSize-1; i++)
 opd[i] = i;

 for(int i=0; i<arrayWidth; i++)
 for(int j=0; j<arrayLength; j++)
 for(int k=0; k<dsSize+ssSize-1; k++)
 ifgm_cube[i][j][k] = i+j+k;

 TestDRPipeline testDR = new TestDRPipeline();
 double[][][] spectrum_cube =
 testDR.DRPipeline(ifgm_cube, opd, pcfSize_h,
 dsSize, ssSize, fittingDegree,
 weight_limit, zpd_value,

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 7 of 13

 wn_lBound, wn_uBound, deglitch_flag);
 }

 double[][][] DRPipeline(double[][][] ifgm_cube, double[] opd,
 int pcfSize_h, int dsSize, int ssSize,
 int fittingDegree, double weight_limit,
 double zpd_value, double wn_lBound,
 double wn_uBound, int deglitch_flag)
 {

 /* instantiate Interpolation */
 CubicSplineInterpolation csi2fts = new
 CubicSplineInterpolation(opd);

 Int index_ZPD = csi2fts.getIndex_ZPD(zpd_value);
 int interferogram_len = csi2fts.getInterferogramLength();

 /* instantiate Phase-Correction */
 PhaseCorrection pc2fts =
 new PhaseCorrection(dsSize, ssSize, fittingDegree,
 pcfSize_h, weight_limit, index_ZPD,
 interferogram_len,
 wn_lBound, wn_uBound);

 int pc_dsSize = pc2fts.get_dsLength();
 /* instantiate Deglitching */
 Deglitching deglitch2fts =
 new Deglitching(pc_dsSize, index_ZPD);

 /* instantiate RealDoubleFFT_Even */
 int new_ssSize = pc2fts.get_ssLength();
 RealDoubleFFT_Even cosfft = new
 RealDoubleFFT_Even(new_ssSize+1);

 int arrayWidth = ifgm_cube.length;
 int arrayLength = ifgm_cube[0].length;

 /* interpolate the interferograms */
 double[] single_ifgm;
 double[][][] ifgm_interp =
 new double[arrayWidth][arrayLength][];

 for(int i=0; i<arrayWidth; i++)
 for(int j=0; j<arrayLength; j++)
 {
 single_ifgm = ifgm_cube[i][j];
 ifgm_interp[i][j] = csi2fts.interpolate(single_ifgm);
 }

 /* deglitch the interferograms */
 for(int i=0; i<arrayWidth; i++)
 for(int j=0; j<arrayLength; j++)
 {
 deglitch2fts.deglitch(ifgm_interp[i][j],
 deglitch_flag);
 }
 /* phase-correct interferograms */

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 8 of 13

 double[] pc2fts_stderr = new double[1];
 double[][][] ifgm_pc = new
 double[arrayWidth][arrayLength][];
 for(int i=0; i<arrayWidth; i++)
 for(int j=0; j<arrayLength; j++)
 {
 ifgm_pc[i][j] =
 pc2fts.getInterferogram(ifgm_interp[i][j],
 pc2fts_stderr);
 }

 /* FFT of interferograms */
 for(int i=0; i<arrayWidth; i++)
 for(int j=0; j<arrayLength; j++)
 cosfft.ft(ifgm_pc[i][j]);

 return ifgm_pc;
 }
}

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 9 of 13

3. FTS-2 Java Classes
Besides the general Java classes for FTS processing given above, there are four Java
classes specific to the FTS-2 system:

• ca.uol.aig.fts.io.NDFIO
• ca.uol.aig.fts.display.QuickLookXY
• ca.uol.aig.fts.message.Drama2FTS
• ca.uol.aig.fts.message.SOAP2FTS

3.1. NDF I/O
The NDFIO class is used to read a FTS-2 specific NDF file which contains an
interferogram cube and create a corresponding spectrum file. The constructor is:

 public NDFIO(String interferogramFile, String spectrumFile)

where interferogramFile is the absolute path of an input interferogram NDF file, and
spectrumFile is the absolute path of the spectrum file corresponding to
interferogramFile.

This class has the following methods:

Method Description
void closeSpectrum() Close the handle of the spectrum file
int get_arrayLength() Get the size of the array in y-axis
int get_arrayWidth() Get the size of the array in x-axis
long[] get_ifgmCubeShape() Get the dimension of the interferogram file
long get_ifgmCubeSize() Get the total number of the data in the

interferogram cube.

String get_ifgmType()
Get the data type of the interferogram cube.
Possible values: _UWORD, _WORD,
_INTEGER, _REAL, _DOUBLE.

int get_npoints_ifgm() Get the number of the data of one
interferogram

java.lang.Object getInterferogram() Get the whole interferogram cube as 1-D
data array stored in Fortran format

double[] getInterferogram(
int indexOfWidth, int
indexOfLength)

Get a specified interferogram.
indexOfWidth is the index of the array
pixel in x-axis starting from 0;
indexOfLength is the index of the array
pixel starting from 0.

double[] getMirrorPos() Get the mirror position (or OPD) from the
interferogram file

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 10 of 13

void saveSpectrum(double[]
spectrum, long[] dims)

Save the spectrum cube to the spectrum
file. The spectrum cube is stored in 1-D
Fortran data order. dims is the dimension
information of the spectrum. dims[0] is the
size of the first dimension of the
interferogram, dims[1] is that of the second
dimension, and dims[2] is that of the third
dimension.

void saveSpectrum(float[] spectrum,
long[] dims)

Save the spectrum cube to the spectrum
file. The spectrum cube is stored in 1-D
Fortran data order. dims is the dimension
information of the spectrum. dims[0] is the
size of the first dimension of the
interferogram, dims[1] is that of the second
dimension, and dims[2] is that of the third
dimension.

void saveSpectrum(int[] spectrum,
long[] dims)

Save the spectrum cube to the spectrum
file. The spectrum cube is stored in 1-D
Fortran data order. dims is the dimension
information of the spectrum. dims[0] is the
size of the first dimension of the
interferogram, dims[1] is that of the second
dimension, and dims[2] is that of the third
dimension.

Due to the symmetry of an even real interferogram, the corresponding spectrum is also
even and real. Therefore, only the first half of its spectrum is stored in spectrumFile.
For those who like to think in terms of positive and negative frequencies, this means that
only the zero frequency and positive frequencies are stored in spectrumFile.

3.2. Quick Look (optional)
The Java class ca.uol.aig.fts.display.QuickLookXY can be used to display 1-D x-y
curves (e.g., an interferogram or spectrum curve). QuickLookXy is based on the SPLAT
(Starlink Spectral Analysis Tool) display system. The following two pictures show an
interferogram and a spectrum displayed with this tool.

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 11 of 13

The constructor of QuickLookXY is:

QuickLookXY(String x_Symbol)

where x_Symbol is the symbol of x-axis.

QuickLookXY has two methods:

showInterferogram(double[] x, double[] y, String xUnit, yUnit, String

identifier)

and

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 12 of 13

showSpectrum(double[] x, double[] y, String xUnit, yUnit, String
identifier)

where x contains the x-axis values, y contains the y-axis values, xUnit is a string
representing the data units for the x-axis, yUnit is a string representing the data units for
the y-axis, and identifier is a string used to identify different curves.

3.3. FTS-2 Messaging System
The FTS-2 DR engine supports two different communication mechanisms within the
ORACDR pipeline. The ‘FTS-2 Data Reduction Engine’ document, SC2/FTS/SOF/001,
details their usage.

References
[1] Numerical Recipes, http://www.numerical-recipes.com/.
[2] JFFTPack and relevant documents, http://cm.bell-labs.com/netlib/fftpack/.
[3] StarJava, http://ww.starlink.rl.ac.uk/java/java.htm.
[4] SPLAT (Spectral Analysis Tool), http://www.starlink.ac.uk/splat.
[5] FTS-2 Data Reduction Engine, version 2.0.

FTS-2 Java Package SC2/FTS/SOF/004 version 1.2

Page 13 of 13

http://www.numerical-recipes.com/
http://cm.bell-labs.com/netlib/fftpack/
http://ww.starlink.rl.ac.uk/java/java.htm
http://www.starlink.ac.uk/splat

	 Change Record
	Contents
	References

