

SCUBA-2 FTS Project Office
University of Lethbridge

Physics Department
4401 University Drive
Lethbridge, Alberta

CANADA
T1K 3M4

Tel: 1-403-329-2771
Fax: 1-403-329-2057

Email: brad.gom@uleth.ca
WWW: http://research.uleth.ca/scuba2/

Document Title: FTS-2 Data Reduction Engine

Document Number: SC2/FTS/SOF/001

Issue: Version 2.2

Date: 2 November 2006

Document
Prepared By:

Baoshe Zhang
FTS-2 SW Engineer

Signature
and Date: 02/11/06

Document
Approved By:

B. G. Gom
FTS-2 Project Manager

Signature
and Date: 02/11/06

Document
Released By:

J. Molnar
Canadian Project
Manager

Signature
and Date: 02/11/06

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 1 of 18

http://research.uleth.ca/scuba2/

Change Record

Issue Date Section(s)

Affected
Description of Change / Change Request Reference /
Remarks

0.1 17/05/05 All First draft
0.2 31/05/05 All Second draft
1.0 20/06/05 All PDR version
2.0 22/03/06 All CDR draft
2.1 1/11/06 All CDR version, minor updates.
2.2 2/11/06 A.1 Fixed last PCF equation

Contents

Change Record.. 2
Contents .. 2
Applicable and Referenced Documents.. 3
Summary ... 3
1. Overview of the SCUBA-2 Data Reduction Pipeline... 4
2. Structure of the FTS-2 Engine .. 5
3. Core Layer .. 6

3.1. I/O .. 8
3.2. Interpolation... 8
3.3. Deglitching... 8
3.4. Phase Correction .. 8
3.5. FFT... 8
3.6. Quick Look .. 8

4. Interface Layer .. 9
4.1. DRAMA Interface Layer ... 9
4.2. SOAP Interface Layer.. 10

5. Benchmarks... 14
6. External Java Libraries ... 15
Appendix... 16

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 2 of 18

Applicable and Referenced Documents

Document Number Title Number
& Issue

SC2/SRE/S210/001 Data Reduction Software Requirements Document 1.56
SC2/SOF/S210/001 SCUBA-2 Pipeline Architecture 1.25
SC2/SOF/IC210/01 DA/DR Pipeline Interface Control Document 1.30
HERSCHEL-HSC-

DOC-0517
Herschel Interactive Analysis: A Basic User’s
Manual

0.4

Starlink User Note 251 Getting Started with the Starlink Java Infrastructure
and Applications Set

1.0

SC2/SRE/SC200/002 Functional and Performance Requirements for
SCUBA-2

SC2/FTS/SCE/001 FTS-2 Science Case 2.0
SC2/FTS/SRE/001 FTS-2 Functional and Performance Requirements 3.0
SC2/FTS/SOF/002 FTS-2 to OCS ICD 1.0
SC2/FTS/SOF/003 FTS-2 Display System 2.0
SPIRE-UOL-REP-

02220
Performance Test Report for the SPIRE Interactive
Analysis – WP Fourier Transform

1.0

www.aao.gov.au/drama DRAMA protocol
ws.apache.org/axis Apache Axis

Summary
The SCUBA-2 data reduction pipeline is designed to call the corresponding algorithm
engine for the current instrument when the pipeline detects a new data file either from the
Data Acquisition System (on-line mode) or from the data archive (off-line mode). After
the algorithm engine completes the relevant tasks or exits, the SCUBA-2 data reduction
pipeline will regain the control of the data flow.

The FTS-2 data reduction algorithm engine is written in Java and consists of two major
parts: an interface layer and a core layer. The interface layer provides a message interface
for the SCUBA-2 data reduction pipeline to invoke the functions of the core layer. The
core layer is made up of five independent modules: I/O, Interpolation, Phase Correction,
FFT, and the Quick Look (QL) display system.

This document describes the details of the interface layer and core layer of the FTS-2
data reduction algorithm engine.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 3 of 18

http://docs.jach.hawaii.edu/JCMT/SC2/SRE/S210/001/sc2_sre_s210_001.pdf
http://docs.jach.hawaii.edu/JCMT/SC2/SOF/S210/001/sc2_sof_s210_001.pdf
http://www.jach.hawaii.edu/%7Etimj/sc2_sof_ic210_01.pdf
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-6.2/manual/iamanual_complete_v0.4.pdf
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-6.2/manual/iamanual_complete_v0.4.pdf
http://www.starlink.rl.ac.uk/star/docs/sun251.htx/sun251.html#xref
http://www.aao.gov.au/drama/html/dramaintro.html
http://ws.apache.org/axis/

1. Overview of the SCUBA-2 Data Reduction Pipeline
Figure 1 illustrates the SCUBA-2 Data Reduction Pipeline architecture. The Pipeline
itself is written in object-oriented Perl. While the Recipes concentrate on reduction
control, the bulk of the algorithmic data processing is performed using separate
“algorithm engines”. Since the implementation of the algorithm engines is independent of
the Pipeline itself, the FTS-2 algorithm engine can be written in Java to exploit existing
Herschel SPIRE code written by members of our group.

Figure 1. SCUBA-2 DR Pipeline

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 4 of 18

2. Structure of the FTS-2 Engine
The FTS-2 algorithm engine uses a multi-tier structure consisting of three separate
modules (referred to as ‘actions’ for DRAMA, or ‘operations’ for SOAP):

Module Function DRAMA action SOAP operation

set_parameters set the data reduction
parameters

SETPARAMETERS setParameters

data_reduction perform the core numerical
computation of FTS-2 data
reduction

DATAREDUCTION dataReduction

exit stop FTS-2 Engine and exit EXIT exitSOAP

From the perspective of the Pipeline, each action or operation has a corresponding
primitive. The Pipeline can call these three actions (or operations) through the FTS-2
DRAMA or SOAP message interface.

Figure 2. FTS-2 Algorithm Engine messaging overview.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 5 of 18

3. Core Layer
In this section, the modules of FTS-2 algorithm engine core layer are described in detail.
Figure 3 shows a schematic of the FTS-2 data reduction module:

Figure 3. FTS-2 Data Reduction module overview.

In order to separate the core numeric processing from both the data access layer and the
message processing layer, the FTS-2 data reduction module is implemented as a Java
class: ca.uol.aig.fts.drpipeline.DRPipeline. This class integrates I/O, Interpolation,
Phase Correction, FFT and Quick Look into a pipeline to fully process FTS-2
interferogram data. Both single-threaded and multi-threaded versions are available:

Single-Thread Version:
DRPipeline(String in, String out, int pcfSize_h,
 int dsSize, int ssSize, int fittingDegree,
 double weight_limit, double ZPD_value,
 double wn_lBound, double wn_uBound,
 int deglitching_flag)

Multi-Threaded Version:
DRPipeline(String in, String out, int pcfSize_h,
 int dsSize, int ssSize, int fittingDegree,
 double weight_limit, double ZPD_value,
 double wn_lBound, double wn_uBound, int deglitching_flag,
 int numThread)

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 6 of 18

If the stage is configured to return position values with 0 occurring exactly at ZPD, then
the DRPipeline call can be simplified slightly:

Single-Threaded Version:
DRPipeline(String in, String out, int pcfSize_h, int dsSize,
 int ssSize, int fittingDegree, double weight_limit,
 double wn_lBound, double wn_uBound,
 int deglitching_flag)

Multi-Threaded Version:
DRPipeline(String in, String out, int pcfSize_h,
 int dsSize, int ssSize, int fittingDegree,
 double weight_limit, double wn_lBound,
 double wn_uBound, int deglitching_flag,
 int numThread)

The parameters are described in the following table:

In path of the raw data file
Out path of the reduced data file
pcfSize_h half of the length of the phase correction function (points)
dsSize half of the length of the double-sided interferogram (points)
ssSize length of the single-sided interferogram (points)
fittingDegree the polynomial degree of phase fitting function
Weight_limit Threshold amplitude (expressed as a fraction), above which the

points will be taken into account in phase fitting
ZPD_value The position of ZPD. Usually, this is a measured value.
wn_lBound The fractional position (0 – 1) in the phase array below which

phase data will not be included in the phase fitting. The lowest
wavenumber used in phase-fitting is wn_lBound x dsSize x
Nyquist.

wn_uBound The fractional position (0 – 1) in the phase array above which
phase data will not be included in the phase fitting. The highest
wavenumber used in phase-fitting is wn_uBound x dsSize x
Nyquist.

deglitching_flag Flag for deglitching:
When deglitching_flag=1, deglitch the core part of the
interferogram.
When deglitching_flag=2, deglitch the tail part of the
interferogram.
When deglitching_flag=3, deglitch the core and tail part of the
interferogram.
Otherwise, no deglitching.

numThread The number of computation threads. When numThread ≤ 1,
DRPipeline uses the single-thread version. When numThread ≥
the width of the array (For FTS-2, the width of the array is 40),
the number of computation threads will be equal to the width
of the array.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 7 of 18

In order to reduce the FFT computation time, the size of the double-sided and single-
sided parts of the interferogram should be factorable as 2a3b5c7d (a, b, c are any integer
that is greater than or equal to 0, d is 0, 1). When the values of dsSize and ssSize do not
satisfy this requirement, DRPipeline will use new values which are nearest to their input
counterparts in DRPipeline and meet this requirement. Appendix B explains the relations
between dsSize, ssSize, pcfSize_h, and ZPD_value in details. The width of the array does
not need to be divisible by numThread. That is, for FTS-2, numThread does not need to
be a factor of 40. DRPipeline knows how to load the data reduction tasks evenly to these
numThread threads.

Since the FTS-2 engine may consume a lot of memory, the garbage collection of Java
must be made to be as efficient as possible. The garbage collection thread should
therefore be integrated into the DRPipeline class.

3.1. I/O
The FTS-2 engine I/O function of is implemented by Java class ca.uol.aig.fts.io.NDFIO.

3.2. Interpolation
The FTS-2 engine interpolation function is implemented in the Java class
ca.uol.aig.fts.fitting.CubicSpline.

3.3. Deglitching
The FTS-2 engine deglitching function is implemented in the Java class
ca.uol.aig.fts.deglitch.Deglitching.

3.4. Phase Correction
The FTS-2 engine Phase Correction function is implemented in the Java class
ca.uol.aig.fts.phasecorrection.PhaseCorrection.

3.5. FFT
The FTS-2 engine uses the classes RealDoubleFFT, RealDoubleFFT_Even, and
RealDoubleFFT_Odd of the Java package ca.uol.aig.fftpack to do all FFT
computations.

3.6. Quick Look
The FTS-2 engine Quick Look function is implemented in the Java class
ca.uol.aig.fts.display.QuickLookXY.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 8 of 18

4. Interface Layer
The algorithm engines are started by the Pipeline on demand and controlled via the
appropriate messaging system. As stated, the Pipeline itself is flexible enough to support
any messaging scheme so long as a single message is sent to the task and a return status
made available on completion.

In a client/server scheme, the algorithm engines are the servers that provide data
reduction calculation services and the Pipeline is the client that is responsible for
initiating the network sessions and passing the parameters to the algorithm engines.
Actually, the interface layer is a messaging mechanism between the algorithm engines
and the Pipeline.

The FTS-2 Java DR engine provides two independent messaging layers to the Pipeline:
DRAMA and SOAP. Either of them can be used for communication between the FTS-2
engine and the Pipeline. Meanwhile, Drama2FTS and SOAP2FTS assume that the ZPD
value is 0.

4.1. DRAMA Interface Layer
The DRAMA system was developed by the Anglo-Australian Observatory (AAO) to
meet the requirements for a fast, distributed environment. The DJAVA DRAMA
package, a Java interface to the AAO’s DRAMA API, is used to integrate the DRAMA
communication system into the FTS-2 Java DR Engine.

The Java class ca.uol.aig.fts.message.Drama2FTS implements a DRAMA task, which
is made up of three DRAMA actions: SETPARAMETERS, DATAREDUCTION, and
EXIT.

Action SETPARAMETERS sets the value for the following parameters:

• pcfSize_h (default value = 80)
• dsSize (default value = 300)
• ssSize (default value = 300)
• fittingDegree (default value = 2)
• weight_limit (default value = 0.01)
• wn_lBound (default value = 0.05)
• wn_uBound (default value = 1.00)
• deglitch (default value = 0)
• numThread (default value = 1)

Action DATAREDUCTION has two input parameters: in and out. These parameters
specify the full path of the raw data file and the processed data file respectively.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 9 of 18

Action EXIT will cause this drama task to stop execution and exit.

The following demo Java program, TestDramaServer.java, starts a FTS-2 DR DRAMA
task, Drama2FTS.

import ca.uol.aig.fts.message.Drama2FTS;

public class TestDramaServer
{
 public static void main(String[] args)
 {
 Drama2FTS df = new Drama2FTS("Drama2FTS");
 }
}

The choice of how to invoke the DRAMA actions of this DRAMA task is mainly up to
the implementation of the Perl/DRAMA XS interface. Here, the DRAMA program
‘ditscmd’ is used to demonstrate the way these three DRAMA actions of this DRAMA
task are called:

ditscmd Drama2FTS EXIT Perform action EXIT
ditscmd Drama2FTS SETPARAMETERS
"pcfSize_h=60" "dsSize=300"
"ssSize=6000" "fittingDegree=2"
"weight_limit=0.1" "wn_lBound=0.05"
"wn_uBound=1.0" "deglitch=3"
"numThread=4"

Perform action SETPARAMETERS to
set pcfSize_h to 60, dsSize to 300,
ssSize=6000, fittingDegree to 2,
weight_limit = 0.1, wn_lBound = 0.05,
wn_uBound = 1.0, deglitch = 3, and
numThread = 2.

Ditscmd Drama2FTS DATAREDUCTION
"in=test_rawdata" "out=test_reduced"

Perform action DATAREDUCTION.
The parameter, in, points to the raw
input data file, and the parameter, out,
points to the processed output data file.

4.2. SOAP Interface Layer
SOAP is an XML-based communication protocol and encoding format for inter-
application communication. It is widely viewed as the backbone to a new generation of
cross-platform cross-language distributed computing applications, termed Web Services.
Apache’s Axis (Apache EXtensible Interaction System), a SOAP engine, is used as a
framework for constructing SOAP processors such as clients, servers, gateways, etc. The
current version of Axis is written in Java and integrated into the StarJava package.

The Java class ca.uol.aig.fts.message.SOAP2FTS implements a SOAP web service,
which is made up of three SOAP operations: setParameters, dataReduction, and
exitSOAP. These are identical to the DRAMA actions described above, however, the
major difference between the DRAMA and SOAP implementations is that DRAMA uses
named parameters and SOAP (Apache Axis) uses position parameters.

Operation setParameters can set a new value for the following parameters:

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 10 of 18

• pcfSize_h
• dsSize
• ssSize
• fittingDegree
• weight_limit
• wn_lBound
• wn_uBound
• deglitching_flag
• numThread

Operation dataReduction has two input parameters, which specify the full paths of a raw
data file and its processed data file respectively.

Operation exitSOAP will cause this SOAP web service to stop execution and exit.

The following demo Java program, TestSOAPServer.java, starts a FTS-2 DR SOAP web
service with the network service port 8082.

import ca.uol.aig.fts.message.SOAP2FTS;

public class TestSOAPServer
{
 public static void main(String[] arg)
 {
 String wsddFile = "/DR2FTS/test/test_soap/fts2deploy.wsdd";
 int soapServerPort = 8082;
 SOAP2FTS sf = new SOAP2FTS();
 sf.startSOAPServer(wsddFile, soapServerPort);
 }
}

In order to be deployed as a web service, each SOAP web service must have a web
service deployment descriptor (WSDD) file. In this demo program, the WSDD file is
/DR2FTS/test/fts2deploy.wsdd, which specifies the name of this web service as
SOAP2FTS.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <service name="SOAP2FTS" provider="Handler" use="literal" style="rpc">
 <parameter name="className" value="ca.uol.aig.fts.message.SOAP2FTS"/>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 11 of 18

 <parameter name="scope" value="Application"/>
 <parameter name="providers" value="GetRPProvider"/>
 <parameter name="loadOnStartup" value="true"/>
 </service>
</deployment>

Although this SOAP web service can be invoked in many different ways, the following
Java program, TestSOAPClient, is only used to illustrate how to invoke three operations
of this web service by Apache Axis itself.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;

public class TestSOAPClient
{
 public static void main(String[] args)
 {
 try
 {
 String inPath = "/DR2FTS/test/test_soap/dr/";
 String outPath = "/DR2FTS/test/test_soap/dr/";

 /* set the network address of the SOAP Server */
 String endpoint = "http://localhost:8082/services/SOAP2FTS";

 Service service = new Service();
 Call call = (Call)service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpoint));

 /* call the operation: setParameters */
 call.setOperationName(new QName("http://www.uleth.ca/", "setParameters"));
 int pcfSize_h = 60;
 int dsSize = 300;
 int ssSize = 6000;
 int fittingDegree = 2;
 float weight_limit = 0.1F;
 double wn_lBound = 0.05;
 double wn_uBound = 0.95;
 int deglitching_flag = 0;
 int numThread = 2;
 call.invoke(new Object[] {pcfSize_h, dsSize, ssSize, fittingDegree,
 weight_limit, wn_lBound, wn_uBound,

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 12 of 18

 deglitching_flag, numThread});

 /* call the operation: dataReduction */
 call.setOperationName(new QName("http://www.uleth.ca/", "dataReduction"));
 String rawDataFile = "abc";
 String reducedDataFile = "abc0";
 call.invoke(new Object[] {inPath + rawDataFile, outPath + reducedDataFile});

 /* call the operation: exitSOAP (stop the SOAP server) */
 call.setOperationName(new QName("http://www.uleth.ca/", "exitSOAP"));
 call.invoke(new Object[] {});
 }
 catch(Exception e)
 {
 System.err.println(e.toString());
 }
 }
}

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 13 of 18

5. Benchmarks
The FTS-2 engine was benchmarked on a Linux Fedora platform with a 2.8Ghz P4 CPU
and 1 GB RAM. The benchmarks do not include any time that ORAC-DR would take to
call the algorithm engine. In general, the phase correction function (PCF) decays very
quickly. Usually, in order to reduce the calculation time, only the points of PCF around 0
are taken into account. Larger PCF lengths work better, but require more computation
time. The following tables list three benchmarks with PCF=40, PCF=80, and PCF=160
respectively. There is no need for the PCF size to ever exceed 160.

Table 1. Benchmarks with PCF=40
Interferogram Length

(points)
Benchmarks (s)

Total Time (s)

Scan Mode
Short
Wing

Long
Wing Total I/O(R/W)

Interpola
tion

Phase
Correction FFT Acquisition Processing

SED
850 Band 180 180 360 0.20/0.14 0.18 0.63 0.047 1.80 1.20
SED
Dual Band 300 300 600 0.21/0.18 0.25 0.85 0.063 3.00 1.55
Spectral Line
850 Band 180 3000 3180 0.28/1.07 0.89 2.20 0.408 15.90 4.85
Spectral Line
Dual Band 300 5000 5300 0.35/1.81 1.37 3.41 0.681 26.50 7.62

Table 2. Benchmarks with PCF=80
Interferogram Length

(points)
Benchmarks (s)

Total Time (s)

Scan Mode
Short
Wing

Long
Wing Total I/O(R/W)

Interpola
tion

Phase
Correction FFT Acquisition Processing

SED
850 Band 180 180 360 0.20/0.13 0.18 0.69 0.044 1.80 1.24
SED
Dual Band 300 300 600 0.20/0.16 0.25 1.00 0.055 3.00 1.67
Spectral Line
850 Band 180 3000 3180 0.28/1.01 0.90 3.50 0.407 15.90 6.10
Spectral Line
Dual Band 300 5000 5300 0.35/1.78 1.49 5.76 0.680 26.50 10.06

Table 3. Benchmarks with PCF=160
Interferogram Length

(points)
Benchmarks (s)

Total Time (s)

Scan Mode
Short
Wing

Long
Wing Total I/O(R/W)

Interpola
tion

Phase
Correction FFT Acquisition Processing

SED
850 Band 180 180 360 0.19/0.11 0.17 0.88 0.045 1.80 1.40
SED
Dual Band 300 300 600 0.21/0.15 0.28 1.26 0.057 3.00 1.96
Spectral Line
850 Band 180 3000 3180 0.27/1.04 0.85 6.48 0.406 15.90 9.05
Spectral Line
Dual Band 300 5000 5300 0.36/1.75 1.39 10.54 0.670 26.50 14.71

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 14 of 18

6. External Java Libraries
The FTS-2 engine uses four external Java libraries: a Java version of FFTPack, Jama,
StarJava, and a Java version of DRAMA.

The Java version of FFTPack has been translated from the original FORTRAN code by
the FTS-2 group. FFTPack is a well-known package of FORTRAN subprograms for the
fast Fourier transform of periodic and other symmetric sequences. It includes complex,
real, sine, cosine, and quarter-wave transforms. The new Java version of FFTPack can
now be downloaded from many public domains, such as:
http://netlib.bell-labs.com/netlib/fftpack/jfftpack.tgz
http://www.netlib.org/fftpack/jfftpack.tgz

JAMA is a basic linear algebra package for Java. It is developed by NIST and can be
downloaded from:
http://math.nist.gov/javanumerics/jama/

Two other required Java libraries are StarJava (the latest version in Starlink CVS
repository) and DJAVA (Java version of DRAMA). The FTS-2 Java DR Engine uses
StarJava for I/O and the SOAP message interface since Apache Axis is integrated into
StarJava. If DJAVA is used for the DRAMA message interface, the full DRAMA
package must be installed.

If the user needs to run the Java program, TestSOAPClient.java, Globus' Java WS Core is
also need. This Java package can be downloaded from
http://www-unix.globus.org/toolkit/survey/index.php?download=ws-core-4.0.2-bin.tar.gz

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 15 of 18

http://netlib.bell-labs.com/netlib/fftpack/jfftpack.tgz
http://www.netlib.org/fftpack/jfftpack.tgz
http://math.nist.gov/javanumerics/jama/
http://www-unix.globus.org/toolkit/survey/index.php?download=ws-core-4.0.2-bin.tar.gz

Appendix

A. Numerical Method of Phase Correction

A.1 Butterflied Phase Correction
The ideal interferogram can be expressed by:

)cos()()(
0

xfdxI ωωω∫
∞

=

where, ω is the angular wave number (ω=2πσ) and x is the interferogram optical path
difference (OPD). If the phase distortion is included, a real interferogram is:

))(cos()()(
0

ωφωωω += ∫
∞

xfdxI

where, φ (ω) is the phase distortion.

If the even symmetry of f(ω), f(ω) = f(-ω), is taken into account, the interferogram can be
rewritten as follows:

∫

∫

∫

∞

∞−

∞ +−+

∞

=

+=

+=

xii

xixi

eefd

eefd

xfdxI

ωωϕ

ωφωωφω

ωω

ωω

ωφωωω

])([
2
1

])[(
2
1

))(cos()()(

)(

0

))(())((

0

where,
⎩
⎨
⎧

<−−
≥

=
0),(

0),(
)(

ωωφ
ωωφ

ωϕ

φ (ω) can be obtained by fitting the phase of double-sided part of the interferogram. ϕ (ω)
is also called the butterflied phase.

The phase-corrected interferogram is defined as:

)cos()()(
0

xfdxI ωωω∫
∞

=′

It is easy to show that:
)()()()(1 ωϕieFTxIxI −−⊗=′

where, ⊗ is the convolution operation and FT-1 is the inverse Fourier transform. The
phase correction function is defined as:

)()()(1 ωϕieFTxPCF −−=
Owing to the symmetric properties of ϕ (ω):

⎥⎦
⎤

⎢⎣
⎡ +=

−=

∫∫

∫
∞∞

∞

00

0

)sin())(sin()cos())(cos(

))(cos()(

xdxdC

xdCxPCF

ωωφωωωφω

ωφωω

where, C is the normalization constant of Fourier transform.

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 16 of 18

A.2 Numerical Method

In our numerical method, we can use the following discrete Fourier transform (DFT). The
forward DFT of a 1-d complex array X of size n computes an array Y, where:

∑
−

=

−−=
1

0

/12
n

j

nkj
jk eXY π .

The backward DFT computes:

∑
−

=

−=
1

0

/12
n

j

nkj
jk eXY π .

For those who like to think in terms of positive and negative frequencies, this means that
the positive frequencies are stored in the first half of the output and the negative
frequencies are stored in backwards order in the second half of the output, i.e., the
frequency -k/n is the same as the frequency (n-k)/n.

Without loss of generality, we assume that the maximum OPD of the interferogram is L

and the size is N. In a discrete scheme with size N, ,)(ixf
N
Lixi = , 1,,0 −= Ni L ;

))(()(xfFTF j =ω ,
L

jj
πω 2

= , 1,,0 −= Nj L .

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 17 of 18

B. Self-Adaptive Phase Correction

Fig.B.1. A discrete interferogram with N evenly-sampled points. The top curve represents

an interferogram and the below bar represents the positions of the sampling points. The
red vertical bar represents the exact position of zero-path distance (ZPD).

Without loss of generality, a position is represented by an index number, i.e., the physical
position represented by L is (L x ∆x + the physical position of position 0), where ∆x is
the interval between the two adjacent points. In Fig.1, ZPD falls in [M-1, M]. That is,
there are M points in the left of ZPD and (N-M) points to the right of ZPD.

In the FTS-2 data reduction Java engine, DRPipeline, there are three input parameters,
dsSize, ssSize, pcfSize_h to define the phase correction of an interferogram. When M ≥
dsSize, the points from (M - dsSize) to (M + dsSize - 1) are used as a short double-side
interferogram to calculate the phase error. When M ≥ dsSize but dsSize does not satisfy
the form, 2a x 3b x 5c x 7d (where a, b, and c are an arbitrary non-negative integer, d is 0
or 1), or M < dsSize, dsSize will be replaced with a new value, new_dsSize, which is the
biggest number that is less than M and has the form, 2a x 3b x 5c x 7d, where a, b, and c
are an arbitrary non-negative integer, d is 0 or 1.

When (N – M - pcfSize_h + 1) ≥ ssSize, the value of ssSize will keep unchanged. The
phase correction will output a phase-corrected single-side interferogram with length =
(ssSize + 1). When (N – M - pcfSize_h + 1) ≥ ssSize but ssSize does not satisfy the
form, 2a x 3b x 5c (where a, b, and c are an arbitrary non-negative integer), or (N – M -
pcfSize_h + 1) < ssSize, ssSize will be replaced with a new value, new_ssSize, which is
the biggest number that is less than (N-M-pcfSize_h + 1) and has the form, 2a x 3b x 5c,
where a, b, and c are an arbitrary non-negative integer. Then, the phase correction will
output a phase-corrected single-side interferogram with length = (new_ssSize + 1).

FTS-2 Data Reduction Engine SC2/FTS/SOF/001 version 2.2

Page 18 of 18

	 Change Record
	Contents
	 Applicable and Referenced Documents
	Document Number
	Title
	Number & Issue

	Summary
	 Appendix

